Trajectories of functioning in a population-based sample of veterans: contributions of moral injury, PTSD, and depression

Abstract: Although research has shown that exposure to potentially traumatic and morally injurious events is associated with psychological symptoms among veterans, knowledge regarding functioning impacts remains limited. A population-based sample of post-9/11 veterans completed measures of intimate relationship, health, and work functioning at approximately 9, 15, 21, and 27 months after leaving service. Moral injury, posttraumatic stress, and depression were assessed at ~9 months post-separation. We used Latent Growth Mixture Models to identify discrete classes characterized by unique trajectories of change in functioning over time and to examine predictors of class membership. Veterans were assigned to one of four functioning trajectories: high and stable, high and decreasing, moderate and increasing, and moderate and stable. Whereas posttraumatic stress, depression, and moral injury associated with perpetration and betrayal predicted worse outcomes at baseline across multiple functioning domains, moral injury associated with perpetration and depression most reliably predicted assignment to trajectories characterized by relatively poor or declining functioning. Moral injury contributes to functional problems beyond what is explained by posttraumatic stress and depression, and moral injury due to perpetration and depression most reliably predicted assignment to trajectories characterized by functional impairment over time.

Read the full article
Report a problem with this article

Related articles

  • More for Researchers

    Identifying opioid relapse during COVID-19 using natural language processing of nationwide Veterans Health Administration electronic medical record data

    Abstract: Novel and automated means of opioid use and relapse risk detection are needed. Unstructured electronic medical record data, including written progress notes, can be mined for clinically relevant information, including the presence of substance use and relapse-critical markers of risk and recovery from opioid use disorder (OUD). In this study, we used natural language processing (NLP) to automate the extraction of opioid relapses, and the timing of these occurrences, from veteran patients' electronic medical record. We then demonstrated the utility of our NLP tool via analysis of pre-/post-COVID-19 opioid relapse trends among veterans with OUD. For this demonstration, we analyzed data from 107,606 veterans OUD enrolled in Veterans Health Administration, comparing a pandemic-exposed cohort (n = 53,803; January 2019-March 2021) to a matched prepandemic cohort (n = 53,803; October 2017-December 2019). The recall of our NLP tool was 75% and our precision was 94%, demonstrating moderate sensitivity and excellent specificity. Using the NLP tool, we found that the odds of opioid relapse postpandemic onset were proportionally higher compared to prepandemic trends, despite patients having fewer mental health encounters from which to derive instances of relapse postpandemic onset. In this research application of the tool, and as hypothesized, we found that opioid relapse risk was elevated postpandemic. The application of NLP Methods: to identify and monitor relapse risk holds promise for future surveillance, risk prevention, and clinical outcome research.