Assessment of PTSD in military personnel via machine learning based on physiological habituation in a virtual immersive environment

Abstract: Posttraumatic stress disorder (PTSD) is a complex mental health condition triggered by exposure to traumatic events that leads to physical health problems and socioeconomic impairments. Although the complex symptomatology of PTSD makes diagnosis difficult, early identification and intervention are crucial to mitigate the long-term effects of PTSD and provide appropriate treatment. In this study, we explored the potential for physiological habituation to stressful events to predict PTSD status. We used passive physiological data collected from 21 active-duty United States military personnel and veterans in an immersive virtual environment with high-stress combat-related conditions involving trigger events such as explosions or flashbangs. In our work, we proposed a quantitative measure of habituation to stressful events that can be quantitatively estimated through physiological data such as heart rate, galvanic skin response and eye blinking. Using a Gaussian process classifier, we prove that habituation to stressful events is a predictor of PTSD status, measured via the PTSD Checklist Military version (PCL-M). Our algorithm achieved an accuracy of 80.95% across our cohort. These findings suggest that passively collected physiological data may provide a noninvasive and objective method to identify individuals with PTSD. These physiological markers could improve both the detection and treatment of PTSD.

Read the full article
Report a problem with this article

Related articles

  • More for Researchers

    Identifying opioid relapse during COVID-19 using natural language processing of nationwide Veterans Health Administration electronic medical record data

    Abstract: Novel and automated means of opioid use and relapse risk detection are needed. Unstructured electronic medical record data, including written progress notes, can be mined for clinically relevant information, including the presence of substance use and relapse-critical markers of risk and recovery from opioid use disorder (OUD). In this study, we used natural language processing (NLP) to automate the extraction of opioid relapses, and the timing of these occurrences, from veteran patients' electronic medical record. We then demonstrated the utility of our NLP tool via analysis of pre-/post-COVID-19 opioid relapse trends among veterans with OUD. For this demonstration, we analyzed data from 107,606 veterans OUD enrolled in Veterans Health Administration, comparing a pandemic-exposed cohort (n = 53,803; January 2019-March 2021) to a matched prepandemic cohort (n = 53,803; October 2017-December 2019). The recall of our NLP tool was 75% and our precision was 94%, demonstrating moderate sensitivity and excellent specificity. Using the NLP tool, we found that the odds of opioid relapse postpandemic onset were proportionally higher compared to prepandemic trends, despite patients having fewer mental health encounters from which to derive instances of relapse postpandemic onset. In this research application of the tool, and as hypothesized, we found that opioid relapse risk was elevated postpandemic. The application of NLP Methods: to identify and monitor relapse risk holds promise for future surveillance, risk prevention, and clinical outcome research.